Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node's key.
The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
解法1:不考虑二叉查找树的特性,遍历查找添加到map,空间复杂度为O(n)
class Solution {
public:
unordered_map<int,int> umap;
int maximum = 0;
void preorder(TreeNode* root) {
if(root == NULL) {
return ;
}
// 如果在原map中没有索引,则加入map
if(umap.find(root->val) == umap.end())
umap[root->val] = 0;
else {
umap[root->val]++;
maximum = max(maximum, umap[root->val]);
}
preorder(root->left);
preorder(root->right);
}
vector<int> findMode(TreeNode* root) {
umap.clear();
maximum = 0;
vector<int> ans;
if(root == NULL)
return ans;
preorder(root);
for(auto itr = umap.begin();itr != umap.end();itr++)
if(itr->second == maximum) // 如果值为最大值,则获取该索引
ans.push_back(itr->first);
return ans;
}
};
解法2: 考虑其特性,从左到右递增,二叉搜索树的中序遍历的结果恰好是所有数的递增序列,所以采用中序遍历,只需存储当前值就可以,不需要额外的空间
class Solution {
public:
vector
int maxCount = 0, currentVal, tempCount = 0;
void inorder(TreeNode root) {
if (root == NULL)
return;
// 从左子树开始
inorder(root->left);
tempCount++;
if (root->val != currentVal) {
currentVal = root->val;
tempCount = 1;
}
if (tempCount > maxCount) {
maxCount = tempCount;
// 有大于原来的清空,重新来
result.clear();
result.push_back(root->val);
}
else if (tempCount == maxCount) {
result.push_back(root->val);
}
inorder(root->right);
}
vector
inorder(root);
return result;
}
};